Appendix A

AP BIOLOGY EQUATIONS AND FORMULAS

STATISTICAL ANALYSIS AND PROBABILITY									s = sample standard deviation (i.e., the sample		
Standard Error				Mean					based estimate of the standard deviation of the		
$SE_{\overline{x}} = \frac{S}{\sqrt{n}}$			Ī	$\overline{t} = \frac{1}{n} \sum_{i=1}^{n} \sum$	x_i				population) \overline{x} = mean <i>n</i> = size of the sample		
Standard Deviation Chi-Square					е				o = observed individuals with observed genotype		
$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$				$^{2} = \sum$	$\frac{(o-e)}{e}$	2			<i>e</i> = expected individuals with observed genotype Degrees of freedom equals the number of distinct		
CHI-SQUARE TABLE								possible outcomes minus one.			
Degrees of Freedom								1			
)	1	2	3	4	5	6	7	8			
).05	3.84	5.99	7.82	9.49	11.07	12.59	14.07	15.51			
).01	6.64	9.32	11.34	13.28	15.09	16.81	18.48	20.09			
LAWS OF PROBABILITY										METRIC PREF	
If A and B are mutually exclusive, then P (A or B) = $P(A) + P(B)$								Factor	Prefix	Symbol	
f A and B are independent, then P (A and B) = P(A) x P(B)								10 ⁹	giga	G	
HARDY-WEINBERG EQUATIONS								106	mega	M	
$p^2 + 2pq + q^2 = 1$ p = frequency of the dominant allele in a population								10 ³	kilo	k	
								10-2	centi	С	
p + q = 1 q = frequency of the recessive allele in a population							ive	10-3	milli	m	
							10-6	micro	μ		
							10 ⁻⁹	nano	n		
									10-12	pico	р
Vlode	= value	that oc	curs m	ost freq	uently ii	n a data	set				
Vledia	n = mid	ldle valu	le that s	separate	es the g	reater a	and less	er halv	es of a data set		
Vlean	= sum (of all da	ta point	s divide	d by nu	mber of	f data p	oints			

Range = value obtained by subtracting the smallest observation (sample minimum) from the greatest (sample maximum)

RATE AND	Water Potential (Ψ)		
Rate	dY= amount of change	$\Psi = \Psi p + \Psi s$	
dY/dt	<i>t</i> = time	$\Psi p = pressure potential$	
Population Growth	B = birth rate	Ψ s = solute potential	
dN/dt=B-D	D = death rate	The water potential will be equal to the	
Exponential Growth	N = population size	solute potential of a solution in an open	
$\frac{dN}{dt} = r_{\max}N$	K = carrying capacity	container, since the pressure potential	
	r _{max} = maximum per capita growth rate	of the solution in an open container is	
Logistic Growth	of population	zero. The Solute Potential of the Solution	
$\frac{dN}{dt} = r_{\max} N \left(\frac{K - N}{K} \right)$		Ψ s = - iCRT	
		i = ionization constant (For sucrose	
Temperature Coefficient \mathbf{Q}_{10}	$t_2 = higher temperature$	this is 1.0 because sucrose does not	
$(k_2)^{\frac{10}{t_2-t_1}}$	$t_1 = $ lower temperature	ionize in water.)	
$Q_{10} = \left(\frac{k_2}{k_1}\right)^{\frac{10}{t_2 - t_1}}$	k_2 = metabolic rate at t_2	C = molar concentration	
Primary Productivity Calculation	k_1 = metabolic rate at t_1	R = pressure constant (R = 0.0831 liter bars/mole K)	
$mg O_2/L \ge 0.698 = mL O_2/L$	Q ₁₀ = the <i>factor</i> by which the reaction rate increases when the		
$mL O_2/L \ge 0.536 = mg \text{ carbon fixed/L}$	temperature is raised by ten	T = temperature in Kelvin (273 + °C)	
	degrees		
SURFACE AREA	Dilution – used to create a dilute		
Volume of a Sphere	r = radius	solution from a concentrated stock	
$V = 4/3 \pi r^3$	l = length	solution	
Volume of a Cube (or Square Column)	h = height	$C_i V_i = C_f V_f$	
V = 1 w h	w = width	i = initial (starting)	
Volume of a Column	A = surface area	C = concentration of solute	
$V = \pi r^2 h$	V = volume	f = final (desired)	
Surface Area of a Sphere	$\Sigma = $ Sum of all	V = volume of solution	
$A = 4 \pi r^2$	a = surface area of one side of the cube	Gibbs Free Energy	
Surface Area of a Cube		$\Delta G = \Delta H - T \Delta S$	
A = 6 a		ΔG = change in Gibbs free energy	
Surface Area of a Rectangular Solid		ΔS = change in entropy	
$A = \Sigma $ (surface area of each side)		ΔH = change in enthalpy	
		<i>T</i> = absolute temperature (in Kelvin)	
		pH = - log [H+]	